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AIlsnct-A thin, semi-infinite inclusion is perfeclly bonded to a surrounding matrix and subjected to an
incident, plane, harmonic 8H wave. The scattering field is evaluated to first order by the method of singular
perturbations and matched asymptotic expansions. with the thickness·to-wavelength ratio as the pertur·
bation parameter. The inner expansion. valid near the tip of the inclusion, obeys the equations of
elastostatics, while outer expansion is a wave field comprising the incident wave along with a
scattered field generated by sources along the mid·line of the inclusion and at its tip. The scattered wave is
of first order in the perturbation parameter, and its far field, as evaluated by the method of steepest
descents, contains non-decaying, reflected and transmitted plane waves as weD as a radiated portion
decaying as ,-112. For some combinations of incident angle and material properties, there are nulls in the
radiated wave at two distinct angles, while in other cases there are none. The angle midway between the
nulls is found to be independent of the inclusion-to-matrix density ratio. but to vary with stiffness ratio and
angle of incidence. Polar plots of the scattered power /lux are given for a 45' incident angle and a range of
material properties.

INTRODUCTION
Few problems of elastic wave scattering can be solved explicitly and exactly, In those that can
be, the scatterer is inevitably bounded by surfaces of a coordinate system in which the wave
operator is separable[l). Even in these, excepting circular cylindrical and spherical cavities or
rigid inclusions, the representations are very cumbersome and not at all transparent. The quest
for useful approximate techniques thus continues and indeed escalates, spurred by recent
interest and success in practical applications of ultrasonic non-destructive testing.

In this paper we treat the title problem by the technique of singular perturbations and
matched asymptotic expansions. This method yields asymptotic formulas for the solution as the
ratio of two characteristic lengths-the inclusion thickness and the wavelength-tends to zero.
Because the wavelength varies inversely with frequency, the results provide in essence a
low-frequency approximation.

Many other workers have undertaken analyses based in some way on the smallness of some
physical dimension of the scatterer with respect to wavelength; here we mention those most
relevant to the case at hand. Crighton and Leppington (2) solved a problem precisely analogous
to the long-wavelength scattering of a plane SH wave by a semi-infinite cavity of constant
width. They used the same method that will be applied here. There are significant differences.
however, in the nature of scattering by long cavities and bonded inclusions. A cavity acts
locally as a perfect reflector of incident waves while an inclusion permits some transmission.
The cavity permits large offsets across it while the inclusion constrains the relative displace
ment of points on its opposite surfaces. In the limit of vanishing thickness, a cavity becomes a
crack, and still acts as a scatterer, while an inclusion becomes a welded seam between its
surfaces and effectively vanishes, leaving a uniform space with no means of scattering an
incident wave.

Datta[3, 4] has used the technique of singular perturbations and matched asymptotic
expansions to study scattering by ellipsoidal and elliptic cylindrical inclusions with all dimen
sions small compared to a wavelength. The method is particularly well suited to this class of
problems, because the inner expansions tum out to be solutions to static elastic problems of
remotely stressed solids containing inclusions of the same shape, and for these the results of
Eshelby[S] can be used directly.

tPresent address: R &: D Associates. Marina del Rey. CA 90291, U.S.A.
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Herrerra and Ma1[6], and Mal and Herrerra[7], used a perturbation technically to study
scattering by thin inclusions. Their method was based on integral equations derived from the
Green's function for the unperturbed, infinite space. If applied to a semi-infinite inclusion, it
would yield results which agree with the present outer expansion to first order, but would give
no information about the actual fields near the tip of the inclusion.

The outer expansion contains singularities situated at the tip of the inclusion. Both the
physical significance of these singularities, and the actual state of affairs near the tip of the
inclusion, emerge quite clearly when the problem is formUlated, as in the present study, from
the viewpoint of matched asymptotics. The inner expansion is found to be a static elastic field;
therefore the actual field near the tip would be that of an elastic inclusion embedded in a
remotely, statically strained matrix. Should the inclusion contain angular comers near its tip,
there would be stress singularities characteristic of the included angle and material mismatch. If
the tip were smooth, there would be no singularities, but there would still be a stress
concentration. Although we choose not to pursue the matter here, one could obtain a detailed
picture of the stress state near the tip by solving the appropriate static elastic problem for the
tip shape in question, with a numerical approach very likely the only recourse. In any event, so
long as the inclusion reaches a uniform thickness at a distance from its tip that is small
compared with a wavelength, out analysis shows that the outer expansion to first order is
independent of the shape of the tip.

The singularities in the outer expansion, as found in[6,7]. and the present work, bear no
direct connection with the static elastic singularities just mentioned, nor with any actual
localized intensification of stresses. Rather, they represent-in the jargon of matched asymp
totic expansions-the inner expansion of the outer expansion, and must be directly related,
through a "matching principle," to the outer expansion of the inner expansion, i.e. to the
far-field of the inner, static elastic solution. The implementation of the matching principle
is discussed in detail in the sequel.

FORMULATION

Figure I shows the dimensions and coordinates for the problem at hand. The coordinates x
and y have been normalized with respect to the characteristic length Al2",. w- I(G/p)lI2, where
A is the wavelength of shear waves in the matrix, w is the frequency, and G is the shear
modulus and p the density of the matrix. The problem is one of the antiplane shear, or SH
waves, where the onlynonvanishing displacement component is perpendicular to the x - y
plane and is independent of z. Atime factor eXp(-iwt) is assumed and hereafter suppressed. An
inclusion of normalized thickness 2e, shear modulus G', and density p' runs along the negative
x-axis.

If M and I denote the planar projections of the matrix and inclusion, respectively, the
complex displacements must satisfy the wave equations

(I)

where V and W are the displacements in the matrix and inclusion respectively, 'V2=

incident wove.-i{xcosB. +Ysin B.l

y
Matrix M:G, p

Interface B

Inclusion I; G/ , p'

Fig. I. Coordinates and dimensions.
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a2/ax2+a2/ay2, and K =(Op'IO'p)1/2 is the ratio of characteristic wave numbers. or inverse ratio
of wavelengths, in the inclusion and matrix.

The inclusion is assumed to be perfectly bonded to the matrix; the necessary continuity of
displacements and normal tractions is expressed by

v=~ aVian = /LaW/an [(x,y) E B), (2)

where B is the interface between the matrix M and the inclusion I, n the outer normal to B, and
/L = 0'10.

A plane, incident wave of the form

v(i)(x,y) = exp[-i(xcos8o+ysin8o») (3)

impinges on the inclusion. Here 80 is the angle of incidence as shown in Fig. 1; we shall restrict
it to (0,""2). The unit amplitude signifies that all displacements are normalized with respect to
the physical amplitude of the incident wave.

Our object is to find a solution to (1) and (2) subject to the auxiliary conditions that (a) the
strain energy density remain bounded in M UI, and (b) Wand V - VIi) represent only
outwardly propagating waves. This cannot be done in general, but we shall find the asymptotic
form of the solution as e tends to zero. The result will be strictly valid only in the limit as e -+ 0,
but on the basis of experience in other related problems, it can be expected to provide
reasonable approximations for small but nonvanishing e.

OUTER AND INNER ASYMPTOTIC EXPANSIONS

As noted by Van Dyke[8], because e is the ratio of two characteristic lengths-the half·thick·
ness of the inclusion and A./21r-no single, uniformaly valid asymptotic expansion is possible. The
perturbation is said to be singular and the method of singular perturbations and matched
asymptotic expansions may be used to find the appropriate expansions.

In preparation, a "stretched" variable yis defined by y =ey, and all conditions pertaining to
Ware restated in terms of a new function W(x,y;e) =W(x,yle;e) =W(x,y;e). The reason is
that as e tends to zero the width 2e of the inclusion shrinks to zero in the x - y plane but
remains constant at 2 in the x - y plane. Thus from (1) and (2) we have

[(x,y) E i],

V(x,y) = W(x,y!E) [(x,Y) E B],

(4)

(5)

where j is the image of I in the x - y plane. On the parallel parts of B the normal n is in the
y-direction, y=1, and the second of (2) becomes

(6)

Next, we introduce the following tentative "outer expansions"t for V and W:

V(x,y;e) = exp[-i(xcos8o+ysin8o)) +ev.(x,y) +o(e) [e -+0, (x,y) fixed], (7)

W(x,y;e) =wo<x,Y) +ew.(x,y) +e2w2(X,y) +0(e2) [e -+0, (x,y) fixed]. (8)

Notice that the incident wave is the only zero-order term of V; the remainder, representing the
scattered wave, vanishes as e tends to zero.

Now we consider the consequences of the field equations. Substitution of (8) into (4) and

tAsymptotic expansions need not always proceed by powers of E. Van Dyke[8] describes systematic means of finding
the appropriate functions of E. In the interest of brevity. we ass"mt the forms (7) and (8), and take as justification their
ability ultimately to meet aD the necessary conditions.
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repeated application of the limit process [£ -+0, (x,j) fixed) yields

(-00 < x <o,ljl < I). (9)

The solutions are

Wo = Co(x) +j~x), C.(x) + jD.(x),

-2 -3

W2 = C2(x) + j~(x) - ¥Co+ K
2CO) - ~D'ci+ /C2Do), (10)

where Co<x), ... , ~(x) are unknown functions of x for -00 < x < 0, and the primes denote
differentiation. The continuity condition (S) obtains at j = yl£ =± I, and upon substitution
from (7), (8) and (10) yields

exp[-;(xcos80 ± £sin8o») + £v.(x, ± £) + 0(£)

= CO<x)± Do(x)+ £[C1(x) ± D1(x») +0(£) (-00 < x <0), (11)

where the upper signs are taken together. By expanding the first term for small £ and repeatedly
letting £ tend to zero, (11) yields

CO<x) ± ~x) = exp(-ixcos80)

C.(x) ± D,(x) = =+= ;sin80 exp(-ixcos8o)+ v.(x,O:l:).

By forming first the sum, then the difference of each pair in (12) we find

CO<x) =exp(-ixcos8o), Do(x) =0,

The second continuity condition (6) similarly yields

£f<exp[-;(XCOs80 + ysin8o») + £V. + O(£)}I = #£~Co+ jDo+ £[C, + jD.l
uy y_:l:. uy

and this implies

#£Do = 0, #£D, = -;sin8oexp(-ixcos8o),

(12)

(13)

#£[~=+=(Co+ /C2CO) -~21D'ci+ /C2Do)] = =+=sin8oexp(-ixcos8o)+ ~VII.. (14)
uy y-O-

We note that the first of (14) is consistent with the second of (13). Substitution of the second of
(14) into the fourth of (13) yields

(IS)

where H(x) is the Heaviside's unit step function. Similarly, the third of (14) combined with the
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first and second of (13) yields

By the foregoing steps we have derived the jump conditions (15) and (16) on the first order
scattered field VI> and they will tum out to be almost sufficient to determine VI. The differential
equation for Vt follows by substituting the expansion (7) into the first of the field equations (1),
noting that the incident wave satisfies it already, dividing by e and letting e tend to zero,
yielding

(17)

The general outwardly propagating solution of (17) subject to (15) and (16) is

-...c J"' e-ll(kllyl+ik.r {(.!._). . sin290+ fA:(cos290- K
2
)}

vl(x,y) - 21T; k +(1 + ;8) cos90 fA: I Ism90sgn(y) + n(k) dk

"'+~ H~I)(,)[Allsin(n9) +Bllcos(n9)],
ll-O

(18)

where sgn(y) = + I if y >0 and -1 if y < 0, 8 is a vanishingly small positive constant, n(k) =
(k2 _1)1/2, , =(x2+y2)112, 9 =tan-I(y/x), All and Bll are undetermined constants, and H~I) is the
nth order Hankel function. Branch cuts in the complex k plane are taken so that n(k) > 0 when
k is real and Ikl > 1. The portion of (18) represented by the integral can be obtained by Fourier
transformation as detailed in Appendix A; each term in the summation is an eigenfunction
which is continuous across the line of the inclusion but singular at the origin.

Two important facts about (18) are that (a) further conditions are needed to determine All,
Bll , n =0, 1, ... , and (b) along with the associated expression for w.(x,Y), it cannot satisfy the
continuity conditions across B near the origin. Both points are manifestations of the singular
nature of the perturbation, with the tip of the inclusion as the zone of non-uniformity. The tip
is, in effect, outside the range of validity of the outer expansions (7) and (8). This in tum means
that, although for n ;;, 1 the ,-ll singularity of H~I)(,) violates the requirement of bounded strain
energy, the corresponding terms in the general expression (18) for VI cannot be excluded solely
on this basis.

At this stage, we seek "inner expansions" in terms of stretched coordinates for the region
near the tip. Thus with x = eX, y = ey, V(x,y) = V(i,y), etc. eqns (1) and (2) become

[(i,Y) E 13]. (19)

The magnified geometry is shown in Fig. 2. The functions V and W will have "inner"

y,.,.,

8'
+-+--.,~---- i, (y

n
Fig.2. Geometry of the near-tip region in the stretched coordinate system i = xlE, Y= y/E. Here S' refers to the

non-parallel portions of the interface.

SS Vol. 16. No. 2-F
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asymptotic expansions analogous to the outer expansions (7) and (8) for V and lV, The inner
and outer expansions must be related by a "matching principle." The principle will dictate the
selection of gauge functions (functions of e appearing as coefficients in the expansion) and will
yield equations for various undetermined constants.

THE MATCHING PRINCIPLE

According to Fraenkel [9], a matching principle applicable when the gauge functions are
either powers of e or log e or products of such powers can be stated as follows. Let yl"')(x,y)
denote the function comprising all terms of the outer expansion with powers of e up to m
(and with any powers of log e). This we designate as the outer expansion to order e"'. Let yl""n)

denote the result of expressing yl"') in terms of x =ei, y =ey, expanding as e~ 0, and retaining
all terms with powers of e up to n. This we designate the inner expansion to order en of the
outer expansion to order e"'. With analogous definitions for V(i,y), Frankel's matching principle
is

yl""n) = 0n,,,,) (20)

for any choice of m and n, provided that the expression on either side of (20) is first rewritten in
terms of the independent variables appearing on the other side.

The first consequence is that excepting Bo, all constants in the summation in (18) must van
ish. If, for example the highest term present were H~')(r) cos(28), then owing to the singularity of
the Hankel function ylll would contain a term of order E-1;:-2, and would generate a term yll,-II, of
order e- I ;:-2 as e tended to zero. The gauge function for the first term in the inner expansion would
have to be e- I

, and the spatially varying part would have to satisfy eqn (19) with e =0, and to be of
order ;:-2 as; tended to infinity. Such a term woul~ of necessity vanish identically. Thus the outer
expansion ylll to order e is indeterminate only up to a constant Bo, and its inner expansion yll.l) to
order e can be found from (7) and (18) to be

1/(11) I . (- 8 +_. 6)+ie[-8o<sin280+ILcOS280-ILIC2)+(1 1)8' 8]v·· = -Ie xcos 0 ySIn 0 - .- -- Sin 0
w ~~ IL

+eBo£l + (2i/w)(1og e +log; -log 2+ 1», (21)

where 1 is Euler's constant .577... The details are given in Appendix A.
The remainder of the analysis seeks to determine So and to examine some features of the

structure of the inner expansion. As to the form of the expansion, it can be seen from (21) that
to match yll,l) with 0 1•11 we must have

and analogously,

W(i,y;e) = wo<i,y) + eWl(i,y) + elogew2(i,y) + o(£Ioge)

[€ ~O, (i,y) fixed], (22)

[e ~O, (i,y) fixed]. (23)

When (22) and (23) are inserted into the field equations (19), and e repeatedly allowed to
tend to zero, we find

[(i,y)E i],

[(i,y) E B]; k =0,1,2. (24)

The matching principle (20) gives conditions at infinity to be satisfied by V" Wk. To satisfy it
with m = n = 0 we must have

Iimvo(;,8) =limvo(xle,y/e). 00.0) = ylo,o) - I,
;.... ,~

(25)
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and the same limit for woo (Here and henceforth the functions Vk are interchangeably regarded
as dependent on either Cartesian. or polar coordinates, the choice being indicated by the
particular notation used.) In view of (25) and (24) with k =0, we have by inspection the
zero-order inner solution

VO<i,Y)" 1 [(i,Y) E M), wO<i,Y) == 1 [(i,Y) E i]. (26)

To satisfy (20) with m =0 and n =1 we require

= v<0,I) IE 1- i(xcos80 +ysin8o),

which implies that

vl(i,Y) =- i(icos8o+ysin8o)+ o(nlogf) as ;-+a'J, (27)

(28)

and the same limits for WI. W2. Again by inspection we see that (28) and (24) with k =2 are
solved by

v2(i,y) E F [(i,Y) EM],

w2(i,y) l!I P [(i,y) E i],

where F is an undetermined constant.
In summary, up to this point we have

VO) =1+F doge +ev.(i,Y).

(29)

With reference to (21), by applying the matching principle (20) with m =n =1we conclude that

-(-8) '(- n + _. n)+ i[-8o<sin28o+IJ:COS280-IJ:1(2)+(1 I). nJ
VI T, - -I xcosuo ySlOuo - . 8 -- SlOuo

'IT SID ° IJ:

+Bo[1 +(2i/'IT)Oog; -1081 +1)] as ;-+a'J, \30)

F= 2iBoI'IT. (31)

The asymptotic form (30), together with the field equations (24) for k =1, provide sufficient
conditions for the full determination of VI (including Bo) and thus enable the solution to be
completed to order E, as outlined in the following section.

THE FIRST.()RDER INNER SOLUTION

The required form (30) contains terms of three distinct orders in ; (viz. ;1, log; and ~,

but only those of order ;1 are fully specified. The equations governing VI and WI are therefore
identical with those for the stalic antiplane deformation of an infinite solid containing a
semi-infinite inclusion of width 2 and stiftness Contrast ,.,., subjected to a uniform strain field at
infinity. The strains at infinity are those corresponding to the displacements given by the fint
term on the r.b.s. of (30). This problem is also analogous to ones in heat conduction and
electrostatics. However, none of these analogs seems to have been solved in a form useful to our
purposes. Indeed, no closed-form solution appears to be possible, in contrast with the case studied
by Crighton and Leppington[2]. They used conformal mapping, but here it fails, because a mapping
of the exterior of the inclusion onto a half plane fails to map the interior onto the other half-plane.



184 D. A. SIMONS

The analysis will be facilitated by introducing a new function t/J(i,Y) defined by

"r -) = { - iVt(i,y) + icos8o+ ysin80 [(i,y) E A?J,
'Y x.y _ iWI(i,Y) + icos8o+ ysin80 [(i,y) E 1].

(32)

From (32) and (24) with k = I we find that t/J is governed by the field equation

and the continuity conditions

(33)

t/JM = "LI, at/JM at/JI (I ~ - 8 -' 8)
'Y ali - JL ali = - JL'an'xcos 0 + ySID 0 [(i,y) E Bl. (34)

where the superscripts M and I indicate that the boundary B is approached from the matrix or
inclusion side. respectively (see Fig. 2). Moreover, comparison of (32) with (30) shows that

t/J = o(log;) as ; -+ 00, (35)

and that once the coefficient of the logarithmetic term is determined, so is Bo.
Although it is impossible to solve explicitly for t/J, its dominent terms at infinity can be found

as follows. Let

_ at/t _ at/JI
!(s) - ali ali ' (36)

where s is arc length along B. Then any function satisfying (33), the first of (34), and (35-36) must
take the form

t/J(i,y) = 2~ f !(s)log{[i - ~(S)]2 +L5i -11(s)Fl1l2 ds +G
B

(37)

where (~,11) are coordinates of points on B and G is an arbitrary constant. By using (37) as
detailed in Appendix B. the asymptotic expansion of t/J to order ;0 can be found; when
compared with (32) it yields

vl(i,j) = -i(icos8o+ysin80)+i(l- JL)cos801ogn 1T
+ i(8/1T)(l-I!JL)sin80+ iG +0(1) as ;-+00, -1T < 8 < 71'. (38)

The derived form (38) must agree with the required form (30). Comparison of the logarithmic
terms yields

Bo=(1- JL)(cos80)/2. (39)

and of the terms of order ;0 yields a value for G. The 8-dependent terms already agree, thereby
providing a consistency check. Equation (31) gives F, and both the inner and outer solutions are
now complete to order e.

Because Bo is evidently independent of the shape of tip of inclusion, and contains to first
order all the information transmitted from the inner to outer regions, we may conclude that the
outer expansion is, to first order, independent of the shape of tip of the inclusion.

Each term of (38) has a physical basis when v. is interpreted as the static displacement field
in an infinite matrix uniformly strained at infinity. The first term is the displacememt field which
causes the strain at infinity. When this is subtracted away, the rest of the field, which is just it/J.
satisfies conditions proportional to (33H35). In particular, the right hand side of the second of
(34) can be regarded as a line of body forces applied along the interface B. The forces on the
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parallel segments of B will be equal and opposite, and far from the origin will cause a uniform
dislocation of the upper segment with respect to the lower one. The corresponding field in the
matrix is approximated by the O-dependent term in (38), which suffers precisely the correct
dislocation from 0 = - 'TT to 'TT. The body forces on the rest of E, the segment near the origin denoted
E', will have a non-zero resultant and, at great distance from the origin, will have the same effect as
a concentrated force, thereby giving rise to the logarithmic term in (38).

THE FAR FIELD

In this section we derive a uniformly valid asymptotic expansion of the scattered field far
from the tip of the inclusion. The method to be used is basically that of steepest descents;
however, a modification proposed by Van der Waerden[lOJ and exemplified by the work of
Bazer and Karp[lIJ must be incorporated so as to render the expansion unifonnly valid. The
rays of potential difficulty are those at 0 = ± ('TT - 00), which bound the zones containing the
geometrically reflected and transmitted plane waves, respectively. These waves are represented
by poles in a complex transform plane which contribute if they are crossed in deforming the
original integration contour to that of the steepest descents. When 0... ± ( 'TT - 00), one of the
poles and the saddle point coalesce, and the usual saddle point expansion becomes singular.
The proposed modification analytically isolates the pole such that the Part containing it can be
evaluated explicitly, and the remaining integral can be uniformly approximated by a standard
saddle point expansion.

To first order in e, the scattered field is just eVh where VI comprises the integral in (18),
which we denote as I, plus the term BoH~I)(r), with Bo given by (39). The variable change
k = cos(3 converts the integral to the more convenient form

1= l.. J Psinl3sgnO - Qe i, cool/HII) d(3
2'TT cos(3 +cos00

ell

(40)

where P =sinOo(l-1/,.,.), Q=sin200 + ,.,.(cos20o - K
2
), 0 ranges from -'TT to 'TT, and Fig. 3depicts

the contour CIJ. The pole giving rise to the reflected and transmitted plane waves is at
(3 =0, == 'TT - 00. Note that the branch cuts needed in the k-plane have been eliminated by the
change of variable.

The saddle point occurs at (3 =101, where the derivative with respect to (3 of the exponent in
(40) vanishes. The contour of steepest descents is then determined by the condition icos«(3
101) =;- S2, where S2 is a real variable ranging over (-00,00). When solved for s this becomes

s = -e i"/4V2sin [!«(3 -/ol)J, (41)

the sign being chosen so that as s increases from -00 to 00, the steepest descents contour C.
parameterized by (41) is traversed in the same general direction as the original contour C" (see Fig.
3).

We now deform the contour CIJ to C. and note that in doing so the pole at (3 = 'TT - 00E 0,
will be crossed if 101> 0,. With (41) implicitly giving (3 in terms of s, from (40) there follows

..
1= exp(ir)J[psin13(s)sgno - Q]exp(-rs 2

) ds
2'TT cos(3(s) +cosOo dsld(3

-CIl

+iH(IOI- O,)(PsgnO - Q/sinOo) exp[ir cos (101- O,)J (42)

The standard saddle point expansion could now be obtained by replacing the coefficient of
the exponential in the integrand by its value at s =O. Instead, the pole at (3(s) =e, = 'TT - 80 or
[see (41)J
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Im{,B}

o I Re{P
I

Fig. 3. Inlearation contours and special points in the complex (J plane.

will be analytically isolated as follows. First. by multiplying the integrand by

1= -eiwf"v'2{sinU(13 -181)]} - cos[!<181 +8o)]/(s - s,)

and using (41) to calculate ds/dl3. the first term of (42) becomes

...
l'=f h(s) exp( - rs~ ds

s - s,

where

Next. (43) is rewritten in the equivalent form

...
l' =f[ shes,) +h(s) - h(s,) h(S,)] e-n2 ds.

s,(s - s,) s - s, s,

The first term can be evaluated explicitly[lO):

... I

f shes,) e-n2 ds =h(S,)(:!!.)1
s,(s - s,) s, r

+s,h(s,)exp(-rs;+ i1T/4)erfc{(l- i)r!cosU(~
v1Icosl!<181 +80))1

(43)

(44)

(45)

(46)

The latter two terms of (45) can be approximated by the usual saddle point expansion. the first
term of which follows by setting s =0 in the coefficient of the exponential:

... I

f [h(S) - h(s,) _ h(S,)] e-n2 ds __ h(O)(:!!.)2.
S - s, s, s, r

(47)
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Finally, by combining eqns (18), (39) and (42-47), and using the standard asymptotoc expansion of
Hbl)(r) [12], the far field expansion of v.(r) may be written

where

VI - R(8)r- 1I2exp(ir) + i(Psgn8 - Q/sin(0)exp[ir cos(181- 8,)]

x {H(181- 8,)-~sgn(181- 8,)erfc[(I- i)r!lcos(MI81 +80})1]} (48)

R(8) = (2 )I~~P(-~"'/4) 8 ){(.! -1)sin8sin80+ 1- p.K2 +(1- #£)cos8cos80." cos +cos 0 #£

+cos[~181- (0)][(1 -1/#£)sgn8sin80- sin80- #£(cos280- /(~/sin80]J. (49)

Equation (48) is uniformly valid as r tends to infinity. If 8 remains fixed and not equal to
± 8" expansion of the complementary error function for large argument reduces (48) to

e~ir - i.,,/4) [( I ).. 2 ]
VI - (2."d(cos8 +cos(0) ;; - I s108s1080 + 1- p.K +(1- #£)cos8cos80

+ i(Psgn8 - Qfsin80)exp[ircos(181- 8,)]H(181- 8,) as r-+ CJJ, 8 fixed, 8~ 8,. (SO)

This is precisely the non-uniform expression which would have resulted from an elementary
saddle-point expansion of the integral in (42). The second term represents non-decaying plane
waves. The reflected wave, appearing when 8> 8" may be written as AI"exp[ircos(8 - 8,»,
where the reflection coefficient At') is given by

The transmitted plane wave appears for 8< - 8" and may be written as A(I)exp[ircos(8 + 8,)],
where

(The first term is the contribution of the incident wave.)
The remaining terms in (SO), being of order r ln, comprimise the radiated wave. It is interesting

to note that these terms are symmetric in 8 and 80. De Hoop[l3] proved that such reciprocity is
necessary for scattering of plane electromagnetic waves by bounded bodies. The proof does
pertain to the scalar wave equation as a special case. but does not carryover to scatterers of
infinite extent. While it is unlikely that the observed reciprocity is merely fortuitous, a proof of
its necessity does not seem to be available.

The situation in the far field at the singular rays 8=± 8, can be inferred directly from the
expansion (48). The argument of the complementary error function vanishes there, so because
erfc(O) = I and H(z) - ~gn(z) =~, the non-decaying portion is just half of the basic plane wave
contribution of the type discussed earlier. The amplitude R(8) of the decaying portion remains
bounded as 8-+ ± 8" as follows by applying L'Hospital's rule to (49).

DISCUSSION

The first order power flux PI may be defined as

(51)

where (...)* denotes the complex conjugate. The quantity £2Pl rd8 would then represent a first
approximation to the normalized temporal average, over a cycle, of the scattered energy
transmitted across the segment r d8. As r tends to infinity, the uniformly valid expression (48) may
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be used to compute PI. However, because for fixed 8PI does not decay when 181> 8" but decays as
,-1 when 181 < 8" aspecific value of , must be chosen for examination of the full scattered field. Thus
for,::; 1000, polar plots will be given for PI. db. where

Each plot will be for specific values of JJ. and K; however, it is somewhat more convenient to
take JJ. and 8 as parameters, where 8::; JJ.K 2 is the mass density ratio of the inclusion to the
matrix.

Figure 4 shows how PI varies with 8 for JJ. ::; 1.5 and 80= 45°. The relatively large values of
PI for 181 > 135° correspond to the reflected and transmitted plane waves as given by the second
term of (50). The smaller values for 181 < 135° correspond to the decaying, radiated wave given
by the first term of (SO). The smooth transition between these regimes is provided by the
uniformly valid expansion (48) and could not have been inferred from the simpler expression
(SO). Also, the oscillations in intensity near 8 =± 135° are characteristics of the more elaborate
expansion (48) not present in (SO).

A most striking feature of Fig. 4 is the appearance of either one or two sharp dips in PI for
certain values of 8. These are associated with nulls in the radiated wave as given by the first term of
(50). Indeed, the quantity in brackets vanishes when

where' = JJ.(1- 8)/(1- JJ.). The corresponding value of sin 8 is

sin 8 ::; - U+JJ.cos8cos80)/sin80 .

(52)

(53)
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Faa. 4. Polar plots of the first order scattered power ftux PIA for stiffness ratio",. = I.S, anaJe of incidence
110 • 4S·, r· 1000 and a range of mass density ratios 8. The approximate non-dimensionalized scattered power

ftux is f 2PI•
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2!'"T"'-...,.....--,·
a

8 •7.5· 8.45° 8 '82.5·

rig. S. Material parameters for which the radiated wave has nulls. Points in the shaded regions represent pairs
of stiffness ratio It and density ratio 8 for which nulls exist. Open circles denote the cases shown in Fig. 4:

closed circles, Fig. 6.
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F'1I. 6. Polar plot of the first order scattered power l\ux PI"'" fOr mass density ratio 8= OJ. incident angle
So = 4S·, r = 1000 and a range of stiffness ratios p.

These will be real if

(54)

and if real, are alwayS less than unity in absolute value, thus yielding angles Olt ~ where the
radiated flux does not vanish. In Fig. 5, for 90 =7.5°, 45° and 82.5°, the repons in p. - 8 space
satisfying (54) are shaded. For 80 = 45°, the open circles represent the plots of Faa. 4. Thus, for
p. = 1.5. as 8 increases we progress from the repme where nuns are absent, to one where they are
present, and apin to one where they are absent. If nuns are present according to (54). but one of
them faUs within the plane-wave zone 181 > 8,., it will be obscured by the plane wave. Such is the
case in FIg. 4 for 8 = 1.25.

From (52) and (53) we may show that

tan(01+~=2p.cos90sin9ol(p.2005290 - sin29o)

where the sign of 81 +~ must coincide with that of the numerator. Thus the angle (01+0~/2

bisecting that between nulls is independent of the density ratio 8, and depends only on
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the stiffness ratio p. and angle of incidence 80 (One might suppose that 81 - O2 would be
independent of p., but this is not the case.)

Figure 6 shows how PI varies with p. for 8 =0.5 and 60 =45°. The corresponding points are
indicated by solid circles in Fig. 5. Note that the pattern is symmetric for p. =I, as is always the
case when the stiffness contrast vanishes.

A glance at Fig. .5 indicates that with 60 and either p. or 8 fixed, as the other is varied from
zero upward, radiation patterns both with and without nulls will be observed. If however, p. and
8 are fixed and 60 is varied, both types of patterns wiJI not necessarily be observed. For 8 close
to unity and p. sufficiently different from unity, only patterns with nulls will occur, while in the
converse case, nulls will be absent for all incident angles between 00 and 900.

CONCLUSIONS

The method of singular perturbations and matched asymptotic expansions leads to c1osed
form solutions for the field of 5H waves scattered by a thin, semi-infinite inclusion. The explicit
form of the far field follows by a modification of the saddle point method. The scattered field
comprises non-decaying, reftected and transmitted plane waves which are dominant along rays
whose angular separation from the inclusion is less than the incident angle, and a radiated wave
which decays as ,112, The latter may have either two nulls or none, depending on the incident
angle and the stiffness and density contrast. When nulls are present, the bisector of the angle
between them is independent of the density contrast.
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APPENDIX A
The firsl order outer solulion

Here we derive by Fourier transforms the solution of the wave equation (17) subject to the discontinuity conditions (15)
and (16). It is convenient to regard the solution as a sum of a part v\') which is symmetric about y == O. and an
anti-symmetric part v\'), and then to solve for each ouly in y> O. The symmetric part will contain the jump in normal
derivative aVIla, prescribed by 16-vanishing for x>Q-and no jump in vi". The antisymmetrie part will have a
gradient with the same limit from above or below the axis, =0, but a jump in v\'l-qain vanishing for x >6-equal to
that given by (15)t. From (IS) to (17) then, the differential equations and boundary conditions are

(55)

tHere the distinctions amona thin cavities, ri&id inclusions, and elastic inclusions are evident. The former two cases would
require specification ofeither the normal derivative itself (for a cavity)or the displacement itself (for ariaid inclusion) on both
sides of the scatterer. while for the latter the jump across the inclusion in both the displacement and its normal derivative are
specified, but the displacement and normal derivative themselves are left unspecified. The former two cases, when formulated
in balf-planes.lead to mixed boundary values problems. wbile the latter. as shown in the text, leads to simple. non-mixed
problems.
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dV\·l/dyl =[5in'80 + /L(cos211o - 1(2)]exp[ - ixcos80(\ + i8)]H( - x)
,,-0·

V\ol(X,O+) = i(\ -1//L)sin8oexp[-ircos80(\ + i8)]H(-x)
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(56)

(57)

where the small positive constant 8 (which renders the medium slightly dissipative) serves merely to place the poles on the
proper side of the inversion contour in the transform plane.

The Fourier transform and its inverse are here defined by

. .
i(k,y) = I !(x,y)exP(-ikx) dx, !(x,y) = 2~I !(k,y)exP(ikx) dk (58)

(59)

for an arbitrary function !(x,y). When the transform operator is applied to (55) there results

(1?+ n')6." = 0, p = a,s,

where n2 = k' -1. With branch cuts for n(k) defined such that Rt{n} ;a 0, the solutions of (59) which remain bounded in
),;aO are

6",(k,y) = AIP'(k)exp(-ny), p '"' a,s.

Application of the transform operator to (56), (57) yields

dii\"/dYI ...o' '"' i[sin'lIo+ /L(cos'llo - 1(')]/[cos8oCl + i8) +k].

6\o'(k,O+) = (li/L - I )sin8oC I + i8) + k].

By comparison with the expressions

(60)

(61)

(62)

dii\"/dYI ,.0' = - n(k)AI''(k), 6\o'(k.0+) = Alo'(k) ,

[which follow from (60)], (61) and (62) yield expressions for Aid, AI.). Substitution into (60) and then the second of (58)
yields .

\
,) = sin'lIo+ e(cos'80 - kl) I exp[-n(k)y + ikx] dk y>O;

v 2"'; n(k)[k + (I + i8)cosllol'

.
\
o,=(l/e- l)sin80 I expl-n(k)y+ikx]dk >0

v 211' k + (I + i8)cos80 ,y .

(63)

(64)

The values for y<0follow from these by symmetric or antisymmetric extensions respectively, and the extended expressions
combine to yield the integral in (18).

To calculate V",II as in (21), it is necessary to find the limiting forms of (63), (64) for small loy. Reprdina (63), one may
simply set x '"' Y'"' 0 and analyze the integral

.
I dk

I, = (k)lk +(\ +i8)coslloJ'
I

By deforming the branc:h cut from k = I to lie along the positive real axis, and then deforming the contour to wrap around
this branc:h cut, the pole at k '"' -(I + i8)cosllo is 1101 crossed and the integral becomes

where 8 has been set to zero sinc:e it has served its purpose. The variable change a • k +cos110 converts this to the form
(380.111) of[13], which yields the value

I, = 211o/sinllo '

If the integral in (64) is denoted I., we note that for y> 0,

(65)

. .
a:; + icosllo1o '"' i I exp(-lIy + ikx) dk = -i:yI exP<-II! + ikx) dk = r/yHLII(r) '"' - ".sin8H\II(r). (66)



192 D. A. SIMONS

The third equality follows from eqns (7.85) and (7.97) of[14J. and the fourth from the chain rule and eqns (9.13) and (9.1.28)
of[l2). Next, integation of (66) yields

~

I. =1Texp(-ucos8o)I sin[8(f.y»)exp(itcosBo)H\llrW+ y2~df

By using the identity sin!8U.Y)) = yW + y2r l and the variable change t = fT/ + x, (67) becomes + I)-I dll.

14 = 1Trsin8Iexp(ifT/cos8olH\Il[r(1l2+ 211COS(J+ 1)1)(1l2+211cos8+ 1r1d1/.

°

(67)

(68)

The form of I. as r trends to zero follows by expanding the inteifl\nd for small r. Because HI(!l(z) - - 2i1 'II'Z (see eqn (9.1.9) of
(12)) we have ..

I. - -2isintlI (1l2 +211costl+ Itl dll =- 2i/1as r ....O.

°
(69)

where the integral is calculated from eqn (857.01) of(l3].
Substitution of (65) and (69) into (63) and (64) yi~lds expressions which when multiplied by E combine to give the third

term on the r.h.s. of (2\). The last term follows from the expansion-for small r~f H~'~r) (see eqns (9.1.3), (9.1.10) and
(9.1.11) of (12)).

APPENDIXB
The lar field 01 the first order inner solution

Here we expand the integal in (37) to order Fas ; .... cr;. From (34) and (36) there follows

I(s) = (1- p,*tcoS8o+ llsin8o-';1).

By factoring out; =(i2+ y2~ from the integrand, (37) becomes

(70)

(71)

(72)

2'11'('; - G) =(1- p,)I08; I,l-£rtcos8o+ llsin8o)ds-(l- p.)I08; I,l ¥ids

+(1- p.) Jlog{(cos8- S~+(sin8- "~J1lfcoS80+"Sin80-';1)dS.
I

The first integral in (71) is evaluated by first noting that on the parallel parts of B at y= :±1, we have Ii = :±ll. iJSiJli = 0, and
iJTIIii = :± I res~tively (see Fig. 2). There is therefore no contribution from corresponding parallel segments. For the
remaining part B' near the tip, the identities IS Iii = iJTIIs, iJTIIii =- ISIs convert it to

( (cosio dll- sinBo dl) =2cos80.j"

since II increases by 2 and f returns to its original value.
The second integral in (71) vanishes, as follows by closing the contour B by a small seement at '1/ = -cr;. applying

Green's theorem, and noting that • is harmonic in the inclusion.
The third integra! in (71) cannot be evaluated explicitly. By considering separately the parallel parts of Band the part

near the end. the latter is seen to vanish as ; .... cr; and the integra! may be written as

°J{[sinBo-!~lJIoa[(1_2lcosBo;+2sinBo+4J),12]

-
- [sinlo-!~l_JI08[(I 2{cosBo;2sin8o+{2; lY]}d{+O(F) as ; .... "'.

Now the variable change {.;( is introduced, leaving the integration limit unchanged. As ; .... cr;. arguments of the terms
~1/iJy tend to -, where both take the common constant value (p. - IXsintlo>/p. (see discussion followina eqn 39). The
logarithmic terms then combine, yielding the form

(73)

where the integral is evaluated from eqn (160.01) of[l3). Thus with (72) for the first integral in (71), zero for the second, and
(73) for the third. the outer expansion to order fJ of the first order inner expansion is obtained for use in eqn (38).


